

Sample &

Buv

SCHS051E-NOVEMBER 1998-REVISED SEPTEMBER 2016

Support &

Community

....

CD4066B CMOS Quad Bilateral Switch

Technical

Documents

Features 1

- 15-V Digital or ±7.5-V Peak-to-Peak Switching
- 125-Ω Typical On-State Resistance for 15-V Operation
- Switch On-State Resistance Matched to Within 5 Ω Over 15-V Signal-Input Range
- **On-State Resistance Flat Over Full** Peak-to-Peak Signal Range
- High ON/OFF Output-Voltage Ratio: 80 dB Typical at f_{is} = 10 kHz, R_L = 1 k Ω
- High Degree of Linearity: <0.5% Distortion Typical at $f_{is} = 1 \text{ kHz}$, $V_{is} = 5 \text{ V}_{p-p}$ $V_{DD} - V_{SS} \ge 10 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega$
- Extremely Low Off-State Switch Leakage, Resulting in Very Low Offset Current and High Effective Off-State Resistance: 10 pA Typical at $V_{DD} - V_{SS} = 10 \text{ V}, \text{ } \text{T}_{A} = 25^{\circ}\text{C}$
- Extremely High Control Input Impedance (Control Circuit Isolated From Signal Circuit): $10^{12} \Omega$ Typical
- Low Crosstalk Between Switches: -50 dB Typical at $f_{is} = 8$ MHz, $R_L = 1$ k Ω
- Matched Control-Input to Signal-Output Capacitance: Reduces Output Signal Transients
- Frequency Response, Switch On = 40 MHz Typical
- 100% Tested for Quiescent Current at 20 V
- 5-V, 10-V, and 15-V Parametric Ratings

2 Applications

- Analog Signal Switching/Multiplexing: Signal Gating, Modulators, Squelch Controls, Demodulators, Choppers, Commutating Switches
- Digital Signal Switching/Multiplexing
- Transmission-Gate Logic Implementation
- Analog-to-Digital and Digital-to-Analog Conversions
- Digital Control of Frequency, Impedance, Phase, and Analog-Signal Gain

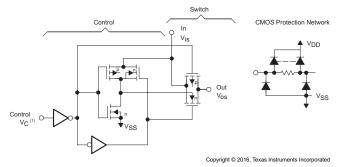
3 Description

Tools &

Software

The CD4066B device is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with the CD4016B device, but exhibits a much lower on-state resistance. In addition, the on-state resistance is relatively constant over the full signalinput range.

The CD4066B device consists of four bilateral switches, each with independent controls. Both the p and the n devices in a given switch are biased on or off simultaneously by the control signal. As shown in Figure 17, the well of the n-channel device on each switch is tied to either the input (when the switch is on) or to V_{SS} (when the switch is off). This configuration eliminates the variation of the switchtransistor threshold voltage with input signal and, thus, keeps the on-state resistance low over the full operating-signal range.


The advantages over single-channel switches include peak input-signal voltage swings equal to the full supply voltage and more constant on-state impedance over the input-signal range. However, for sample-and-hold applications, the CD4016B device is recommended.

Device information ^v					
PART NUMBER	PACKAGE	BODY SIZE (NOM)			
	PDIP (14)	19.30 mm × 6.35 mm			
	CDIP (14)	19.50 mm × 6.92 mm			
CD4066B	SOIC (14)	8.65 mm × 3.91 mm			
	SOP (14)	10.30 mm × 5.30 mm			
	TSSOP (14)	5.00 mm × 4.40 mm			

Device Information(1)

For all available packages, see the orderable addendum at (1) the end of the datasheet.

Bidirectional Signal Transmission Via Digital Control Logic

Table of Contents

Feat	tures 1
Арр	lications 1
	cription 1
Rev	ision History 2
Pin	Configuration and Functions 3
Spe	cifications 4
6.1	Absolute Maximum Ratings 4
6.2	ESD Ratings 4
6.3	Recommended Operating Conditions 4
6.4	Thermal Information 4
6.5	Electrical Characteristics 5
6.6	Switching Characteristics 8
6.7	Typical Characteristics 9
Para	ameter Measurement Information 10
Deta	ailed Description 14
8.1	Overview 14
8.2	Functional Block Diagram 14
	App Des Rev Pin 6.1 6.2 6.3 6.4 6.5 6.6 6.7 Para 8.1

	8.3	Feature Description	14
	8.4	Device Functional Modes	14
9	Арр	lication and Implementation	15
	9.1	Application Information	15
	9.2	Typical Application	15
10	Pow	ver Supply Recommendations	17
11	Lay	out	17
	11.1	Layout Guidelines	17
	11.2	Layout Example	17
12	Dev	ice and Documentation Support	18
	12.1	Receiving Notification of Documentation Updates	18
	12.2	Community Resources	18
	12.3	Trademarks	18
	12.4	Electrostatic Discharge Caution	18
	12.5	Glossary	18
13		hanical, Packaging, and Orderable mation	18

4 Revision History

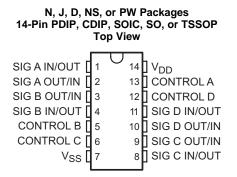
•

2

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision D (September 2003) to Revision E

Mechanical, Packaging, and Orderable Information section	<i>oport</i> section, and	1
Deleted Ordering Information table, see POA at the end of the data sheet		


EXAS **STRUMENTS**

www.ti.com

Page

5 Pin Configuration and Functions

Pin Functions

	PIN		DESCRIPTION		
NO.	NAME	I/O	DESCRIPTION		
1	SIG A IN/OUT	I/O	Input/Output for Switch A		
2	SIG A OUT/IN	I/O	Output/Input for Switch A		
3	SIG B OUT/IN	I/O	Output/Input for Switch B		
4	SIG B IN/OUT	I/O	Input/Output for Switch B		
5	CONTROL B	Ι	Control pin for Switch B		
6	CONTROL C	Ι	Control pin for Switch C		
7	V _{SS}	—	Low Voltage Power Pin		
8	SIG C IN/OUT	I/O	Input/Output for Switch C		
9	SIG C OUT/IN	I/O	Output/Input for Switch C		
10	SIG D OUT/IN	I/O	Output/Input for Switch D		
11	SIG D IN/OUT	I/O	Input/Output for Switch D		
12	CONTROL D	Ι	Control Pin for D		
13	CONTROL A	Ι	Control Pin for A		
14	V _{DD}	_	Power Pin		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{DD}	DC supply-voltage	Voltages referenced to V_{SS} pin	-0.5	20	V
Vis	Input voltage	All inputs	-0.5	V _{DD} + 0.5	V
I _{IN}	DC input current	Any one input		±10	mA
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all $\ensuremath{pins^{(1)}}$	±500	V	
	Electrostatic discharge	Electrostatic discharge Charged device model (CDM), per JEDEC specification JESD22- C101, all pins ⁽²⁾		±1500

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{DD}	Supply voltage	3	18	V
T _A	Operating free-air temperature	-55	125	°C

6.4 Thermal Information

		CD4066B				
	THERMAL METRIC ⁽¹⁾		D (SOIC)	NS (SO)	PW (TSSOP)	UNIT
		14 PINS	14 PINS	14 PINS	14 PINS	-
R_{\thetaJA}	Junction-to-ambient thermal resistance	53.7	89.5	88.2	119.5	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	41.0	49.7	46.1	48.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	33.6	43.8	47.0	61.2	°C/W
ΨJT	Junction-to-top characterization parameter	25.8	17.4	16.3	5.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	33.5	43.5	46.6	60.6	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
		$V_{DD} = 5 V$ $V_{is} = 0 V$				0.4	V
		$V_{DD} = 5 V$ $V_{is} = 5 V$		4.6			V
		$V_{DD} = 10 V$ $V_{is} = 0 V$				0.5	V
V _{os}	Switch output voltage	V _{DD} = 10 V V _{is} = 10 V		9.5			V
		$V_{DD} = 15 V$ $V_{is} = 0 V$				1.5	V
		$V_{DD} = 15 V$ $V_{is} = 15 V$		13.5			V
	On-state resistance		$V_{DD} = 5 V$		15		
$\Delta \mathbf{r}_{\text{on}}$	difference between any	R_L = 10 k Ω , V_C = V_{DD}	V _{DD} = 10 V		10		Ω
	two switches		V _{DD} = 15 V		5		
THD	Total harmonic distortion	$ \begin{array}{l} V_{C} = V_{DD} = 5 \text{ V}, \ V_{SS} = -5 \text{ V}, \\ V_{is(p\text{-}p)} = 5 \text{ V} \ (\text{sine wave centered} \\ R_{L} = 10 \ \text{k}\Omega, \ f_{is} = 1\text{-kHz sine wate} \end{array} $	ed on 0 V), ve	0 V), 0.4%			
–3-dB cutoff freq (switch on)	–3-dB cutoff frequency (switch on)	$V_{C} = V_{DD} = 5 \text{ V}, V_{SS} = -5 \text{ V}, V_{is}$ (sine wave centered on 0 V), R			40		MHz
	–50-dB feedthrough frequency (switch off)	V_{C} = V_{SS} = –5 V, $V_{is(p\text{-}p)}$ = 5 V (sine wave centered on 0 V), R_{L} = 1 $k\Omega$			1		MHz
	–50-dB crosstalk frequency	$ \begin{array}{l} V_{C}(A) = V_{DD} = 5 \ V, \\ V_{C}(B) = V_{SS} = -5 \ V, \\ V_{is}(A) = 5 \ V_{p\text{-}p}, \ 50\text{-}\Omega \ \text{source}, \\ R_{L} = 1 \ k\Omega \end{array} $			8		MHz
Cis	Input capacitance	$V_{DD} = 5 V, V_{C} = V_{SS} = -5 V$			8		pF
C _{os}	Output capacitance	$V_{DD} = 5 V, V_{C} = V_{SS} = -5 V$			8		pF
Cios	Feedthrough	$V_{DD} = 5 V, V_{C} = V_{SS} = -5 V$			0.5		pF
			$V_{DD} = 5 V$	3.5			
V _{IHC}	Control input, high voltage	See Figure 7	V _{DD} = 10 V	7			V
			V _{DD} = 15 V	11			
	Crosstalk (control input to signal output)	$\label{eq:V_C} \begin{array}{l} V_C = 10 \ V \ (square \ wave), \\ t_r, \ t_f = 20 \ ns, \ R_L = 10 \ k\Omega \\ V_{DD} = 10 \ V \end{array}$			50		mV
			$V_{DD} = 5 V$		35	70	
	Turnon and turnoff propagation delay	$\label{eq:VIN} \begin{split} V_{\text{IN}} &= V_{\text{DD}}, t_{\text{r}}, t_{\text{f}} = 20 \text{ns}, \\ C_{\text{L}} &= 50 \text{pF}, \text{R}_{\text{L}} = 1 \text{k}\Omega \end{split}$	V _{DD} = 10 V		20	40	ns
	propagation dolay	$O_{L} = 00 \text{ pr}, \text{ N}_{L} = 1 \text{ N}_{22}$	V _{DD} = 15 V		15	30	
		$V_{is} = V_{DD}, V_{SS} = GND,$	$V_{DD} = 5 V$		6		
	Maximum control input	$R_L = 1 k\Omega$ to GND, $C_L = 50 pF$,	V _{DD} = 10 V		9		
	Maximum control input repetition rate	$V_{C} = 10 V$ (square wave centered on 5 V), t_{r} , $t_{f} = 20 \text{ ns}$, $V_{os} = 1/2 V_{os} \text{ at 1 kHz}$	V _{DD} = 15 V		9.5		MHz
CI	Input capacitance		+		5	7.5	pF

SCHS051E - NOVEMBER 1998-REVISED SEPTEMBER 2016

TEXAS INSTRUMENTS

www.ti.com

Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN TYP MAX	UNIT
		T _A = -55°C	0.64	
		$T_A = -40^{\circ}C$	0.61	
	$V_{DD} = 5 V$ $V_{is} = 0 V$	$T_A = 25^{\circ}C$	0.51	mA
	VIS - O V	$T_A = 85^{\circ}C$	0.42	
		$T_A = 125^{\circ}C$	0.36	
		$T_A = -55^{\circ}C$	-0.6 4	
		$T_A = -40^{\circ}C$	-0.6 1	
	$V_{DD} = 5 V$ $V_{is} = 5 V$	$T_A = 25^{\circ}C$	-0.51	mA
		$T_A = 85^{\circ}C$	-0.4 2	
		T _A = 125°C	-0.3 6	
	V _{DD} = 10 V V _{is} = 0 V	$T_A = -55^{\circ}C$	1.6	
		$T_A = -40^{\circ}C$	1.5	
		$T_A = 25^{\circ}C$	1.3	mA
is Switch input current		$T_A = 85^{\circ}C$	1.1	
		$T_A = 125^{\circ}C$	0.9	
		$T_A = -55^{\circ}C$	-1.6	
		$T_A = -40^{\circ}C$	-1.5	
	V _{DD} = 10 V V _{is} = 10 V	$T_A = 25^{\circ}C$	-1.3	mA
		$T_A = 85^{\circ}C$	-1.1	
		$T_A = 125^{\circ}C$	-0.9	
		$T_A = -55^{\circ}C$	4.2	
		$T_A = -40^{\circ}C$	4	
	V _{DD} = 15 V V _{is} = 0 V	$T_A = 25^{\circ}C$	3.4	mA
		T _A = 85°C	2.8	
		T _A = 125°C	2.4	
		T _A = -55°C	-4.2	
		$T_A = -40^{\circ}C$	-4	
	V _{DD} = 15 V V _{is} = 15 V	T _A = 25°C	-3.4	mA
	v _{IS} = 15 v	T _A = 85°C	-2.8	
		T _A = 125°C	-2.4	

Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS		MIN	TYP	MAX	UNIT
		$T_A = -55^{\circ}C$				0.25		
			$T_A = -40^{\circ}C$				0.25	
		$V_{IN} = 0 \text{ to } 5 \text{ V}$ $V_{DD} = 5 \text{ V}$	$T_A = 25^{\circ}C$			0.01	0.25	μA
			$T_A = 85^{\circ}C$				7.5	
			T _A = 125°C				7.5	
			$T_A = -55^{\circ}C$				0.5	
			$T_A = -40^{\circ}C$				0.5	
		$V_{IN} = 0$ to 10 V $V_{DD} = 10$ V	$T_A = 25^{\circ}C$			0.01	0.5	μA
			$T_A = 85^{\circ}C$				15	
1	Quiescent device current		T _A = 125°C				15	
I _{DD}	Quiescent device current		$T_A = -55^{\circ}C$				1	
			$T_A = -40^{\circ}C$				1	
		V _{IN} = 0 to 15 V V _{DD} = 15 V	$T_A = 25^{\circ}C$			0.01	1	μA
		VDD - 13 V	T _A = 85°C				30	
			T _A = 125°C				30	
		V _{IN} = 0 to 20 V V _{DD} = 20 V	$T_A = -55^{\circ}C$	55°C			5	
			$T_A = -40^{\circ}C$				5	
			$T_A = 25^{\circ}C$			0.02	5	μA
			$T_A = 85^{\circ}C$				150	
			T _A = 125°C				150	
			V _{DD} = 5 V	$T_A = -55^{\circ}C$			800	Ω
				$T_A = -40^{\circ}C$			850	
				$T_A = 25^{\circ}C$		470	1050	
				$T_A = 85^{\circ}C$			1200	
				$T_A = 125^{\circ}C$			1300	
				$T_A = -55^{\circ}C$			130	
		$to (V_{DD} - V_{SS})$		$T_A = -40^{\circ}C$			210	
r _{on}	On-state resistance (max)	$V_{\rm C} = V_{\rm DD}^2$,	$V_{DD} = 10 V$	$T_A = 25^{\circ}C$		125	240	
		$R_L = 10 \text{ k}\Omega \text{ returned } V_{is} = V_{SS}$		$T_A = 85^{\circ}C$			300	
		to V _{DD}		T _A = 125°C			320	
				$T_A = -55^{\circ}C$			200	
				$T_A = -40^{\circ}C$			210	
			V _{DD} = 15 V	$T_A = 25^{\circ}C$		125	240	
				$T_A = 85^{\circ}C$			300	
				T _A = 125°C			320	

SCHS051E - NOVEMBER 1998-REVISED SEPTEMBER 2016

www.ti.com

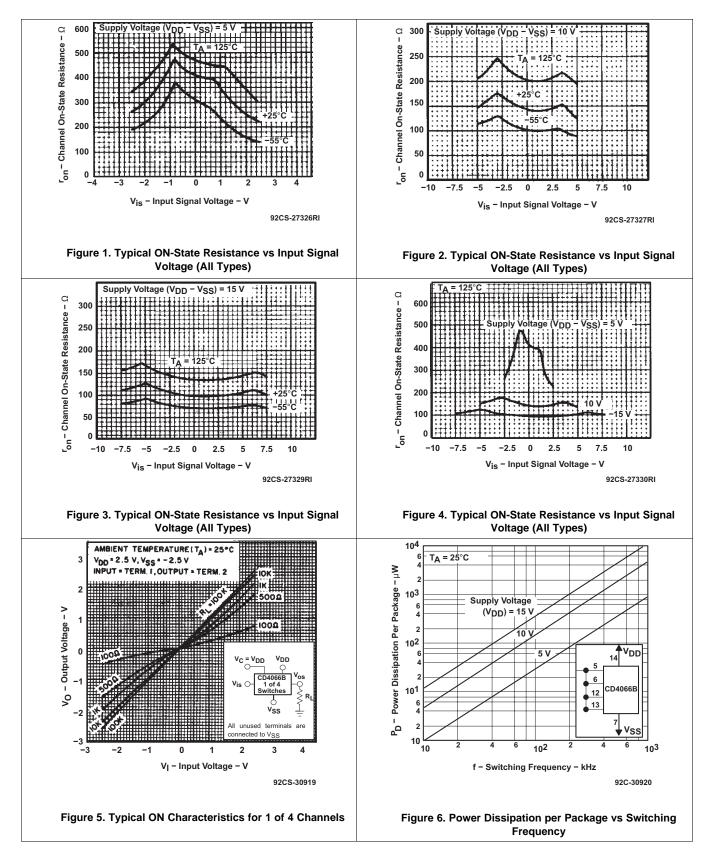
STRUMENTS

TEXAS

Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TES	TEST CONDITIONS					
				T _A = -55°C		1		
				$T_A = -40^{\circ}C$		1		
			$V_{DD} = 5 V$	T _A = 25°C		1		
				T _A = 85°C		1		
				T _A = 125°C		1		
				T _A = -55°C		2		
		I _{is} < 10 μΑ,	V _{DD} = 10 V	$T_A = -40^{\circ}C$		2	V	
V _{ILC}	Control input, low voltage (max)	$V_{is}^{s} = V_{SS}, V_{OS} = V_{DD}$, and $V_{is} = V_{DD}, V_{OS} = V_{SS}$		T _A = 25°C		2		
				T _A = 85°C		2		
				T _A = 125°C		2		
			V _{DD} = 15 V	T _A = -55°C		2		
				$T_A = -40^{\circ}C$		2	_	
				$T_A = 25^{\circ}C$		2		
				$T_A = 85^{\circ}C$		2		
				T _A = 125°C		2		
			$T_A = -55^{\circ}C$	$T_A = -55^{\circ}C$		±0.1		
		$V_{is} \le V_{DD}, V_{DD} - V_{SS} = 18 V,$	$T_A = -40^{\circ}C$		±0.1			
I _{IN}	Input current (max)	$V_{CC} \le V_{DD} - V_{SS}$	$T_A = 25^{\circ}C$	±1	0 ^{–5} ±0.1	μA		
		V _{DD} = 18 V	$T_A = 85^{\circ}C$		±1			
			T _A = 125°C		±1]		


6.6 Switching Characteristics

 $T_A = 25^{\circ}C$

PARAMETER	FROM	то	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		Signal output		5 V		20	40	
t _{pd}	Signal input		$V_{IN} = V_{DD}$, t_r , $t_f = 20$ ns, $C_L = 50$ pF, $R_L = 1$ k Ω	10 V		10	20	ns
				15 V		7	15	
	Signal input	Signal output		5 V		35	70	
t _{plh}			$V_{IN} = V_{DD}, t_r, t_f = 20 \text{ ns},$ $C_L = 50 \text{ pF}, R_L = 1 k\Omega$	10 V		20	40	ns
				15 V		15	30	
	Signal input	Signal output		5 V		35	70	
t _{phl}			$V_{IN} = V_{DD}$, t_r , $t_f = 20$ ns, $C_L = 50$ pF, $R_L = 1$ k Ω	10 V		20	40	ns
				15 V		15	30	

6.7 Typical Characteristics

7 Parameter Measurement Information

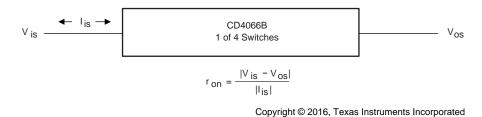


Figure 7. Determination of r_{on} as a Test Condition for Control-Input High-Voltage (V_{IHC}) Specification

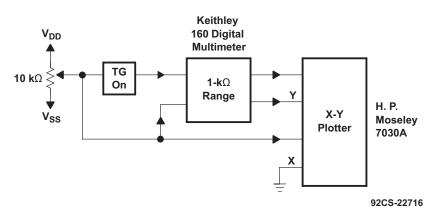
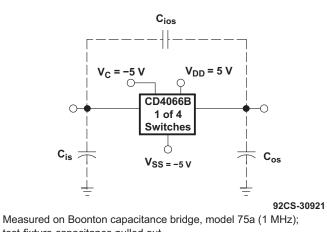
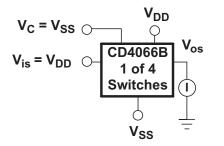
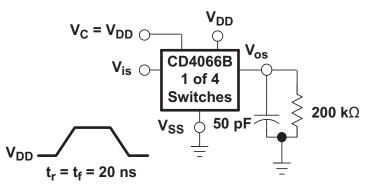



Figure 8. Channel On-State Resistance Measurement Circuit



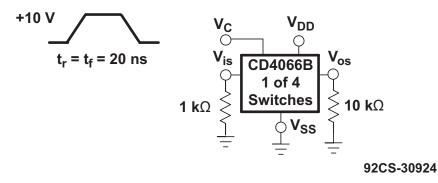
test-fixture capacitance nulled out.

Figure 9. Typical On Characteristics for One of Four Channels


Parameter Measurement Information (continued)

92CS-30922

All unused terminals are connected to V_{SS}.


Figure 10. Off-Switch Input or Output Leakage

92CS-30923

All unused terminals are connected to V_{SS}.

Figure 11. Propagation Delay Time Signal Input (V_{is}) to Signal Output (V_{os})

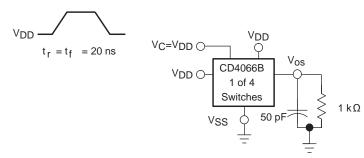
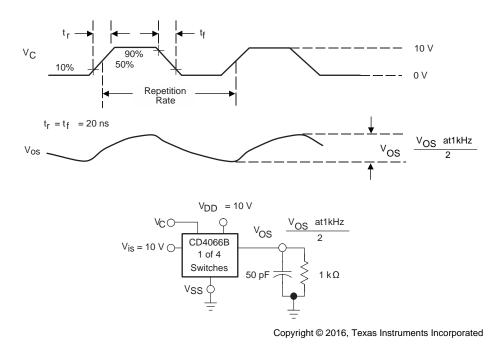

All unused terminals are connected to V_{SS}.

Figure 12. Crosstalk-Control Input to Signal Output

TEXAS INSTRUMENTS

www.ti.com

Parameter Measurement Information (continued)

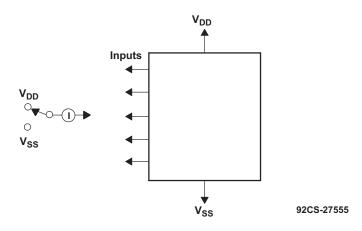


Copyright © 2016, Texas Instruments Incorporated

All unused pins are connected to V_{SS} .

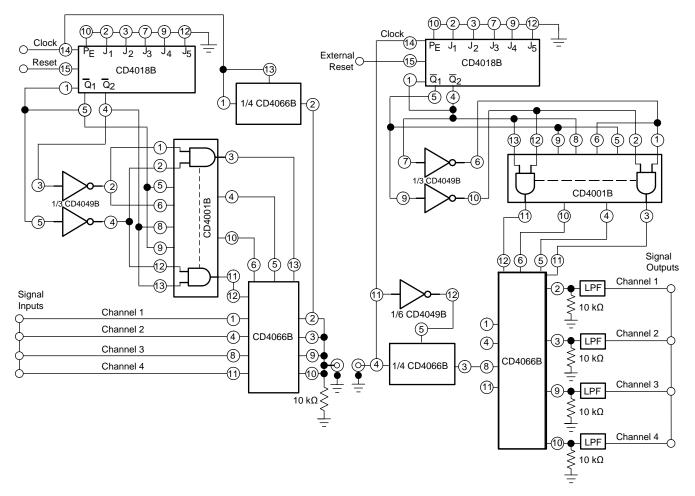
Delay is measured at V_{os} level of +10% from ground (turn-on) or on-state output level (turn-off).

Figure 13. Propagation Delay, t_{PLH}, t_{PHL} Control-Signal Output



All unused pins are connected to V_{SS} .

Figure 14. Maximum Allowable Control-Input Repetition Rate

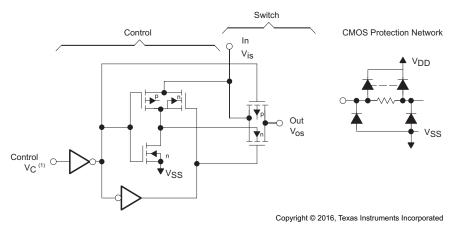


Parameter Measurement Information (continued)

Measure inputs sequentially to both V_{DD} and V_{SS}. Connect all unused inputs to either V_{DD} or V_{SS}. Measure control inputs only.

Figure 15. Input Leakage-Current Test Circuit

Copyright © 2016, Texas Instruments Incorporated


Figure 16. Four-Channel PAM Multiplex System Diagram

8 Detailed Description

8.1 Overview

CD4066B has four independent digitally controlled analog switches with a bias voltage of V_{SS} to allow for different voltage levels to be used for low output. Both the p and the n devices in a given switch are biased on or off simultaneously by the control signal. As shown in Figure 17, the well of the n-channel device on each switch is tied to either the input (when the switch is on) or to V_{SS} (when the switch is off). Thus when the control of the device is low, the output of the switch goes to V_{SS} while when the control is high the output of the device goes to V_{DD} .

8.2 Functional Block Diagram

- (1) All control inputs are protected by the CMOS protection network.
- (2) All p substrates are connected to V_{DD} .
- (3) Normal operation control-line biasing: switch on (logic 1), $V_C = V_{DD}$; switch off (logic 0), $V_C = V_{SS}$.
- (4) Signal-level range: $V_{SS} \le V_{is} \le V_{DD}$.

Figure 17. Schematic Diagram of One-of-Four Identical Switches and Associated Control Circuitry

8.3 Feature Description

Each switch has different control pins, which allows for more options for the outputs. Bias Voltage allows the device to output a voltage other than 0 V when the device control is low. The CD4066B has a large absolute maximum voltage for V_{DD} of 20 V.

8.4 Device Functional Modes

Table 1 lists the functions of this device.

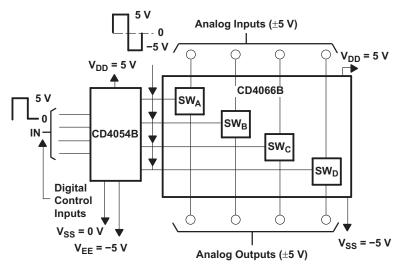
INP	OUTPUT	
SIG IN/OUT	CONTROL	SIG OUT/IN
Н	Н	Н
L	Н	L
X	L	V _{SS}

Table 1. Function Table

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.


9.1 Application Information

In applications that employ separate power sources to drive V_{DD} and the signal inputs, the V_{DD} current capability should exceed V_{DD}/R_L (R_L = effective external load of the four CD4066B device bilateral switches). This provision avoids any permanent current flow or clamp action on the V_{DD} supply when power is applied or removed from the CD4066B device.

In certain applications, the external load-resistor current can include both V_{DD} and signal-line components. To avoid drawing V_{DD} current when switch current flows into pins 1, 4, 8, or 11, the voltage drop across the bidirectional switch must not exceed 0.8 V (calculated from r_{on} values shown).

No V_{DD} current flows through R_L if the switch current flows into pins 2, 3, 9, or 10.

9.2 Typical Application

92CS-30927

Figure 18. Bidirectional Signal Transmission Through Digital Control Logic

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Avoid bus contention because it can drive currents in excess of maximum limits. The high drive also creates fast edges into light loads, so consider routing and load conditions to prevent ringing.

9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions:
 - For rise time and fall time specifications, see $\Delta t/\Delta v$ in *Recommended Operating Conditions*.
 - For specified high and low levels, see V_{IH} and V_{IL} in *Recommended Operating Conditions*.
- 2. Recommended Output Conditions:
 - Load currents should not exceed ±10 mA.

Typical Application (continued)

9.2.3 Application Curve

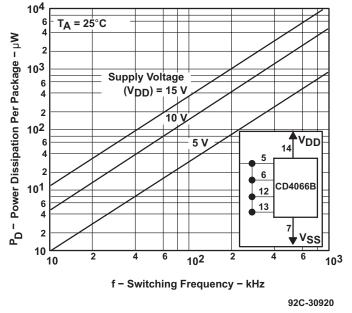


Figure 19. Power Dissipation vs. Switching Frequency

10 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in *Recommended Operating Conditions*.

Each VCC pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, $0.1-\mu$ F is recommended; if there are multiple VCC pins, then $0.01-\mu$ F or $0.022-\mu$ F is recommended for each power pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. A $0.1-\mu$ F and a $1-\mu$ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices inputs must never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they are tied to GND or VCC, whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it disables the output section of the part when asserted. This does not disable the input section of the I/Os, so they cannot float when disabled.

11.2 Layout Example

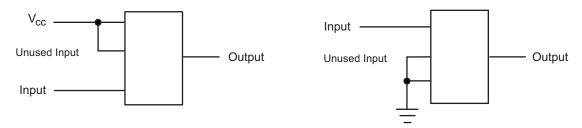


Figure 20. Diagram for Unused Inputs

TEXAS INSTRUMENTS

www.ti.com

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

20-Sep-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CD4066BE	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU CU SN	N / A for Pkg Type	-55 to 125	CD4066BE	Samples
CD4066BEE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4066BE	Samples
CD4066BF	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD4066BF	Samples
CD4066BF3A	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD4066BF3A	Samples
CD4066BF3AS2283	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI			
CD4066BF3AS2534	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI			
CD4066BM	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4066BM	Samples
CD4066BM96	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-55 to 125	CD4066BM	Samples
CD4066BM96E4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4066BM	Samples
CD4066BM96G4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4066BM	Samples
CD4066BME4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4066BM	Samples
CD4066BMG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4066BM	Samples
CD4066BMT	ACTIVE	SOIC	D	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4066BM	Samples
CD4066BNSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4066B	Samples
CD4066BPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM066B	Samples
CD4066BPWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM066B	Samples
CD4066BPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-55 to 125	CM066B	Samples
CD4066BPWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM066B	Samples

20-Sep-2015

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
JM38510/05852BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 05852BCA	Samples
M38510/05852BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 05852BCA	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

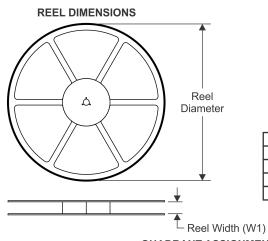
PACKAGE OPTION ADDENDUM

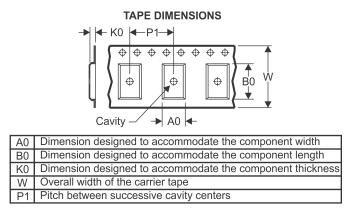
20-Sep-2015

OTHER QUALIFIED VERSIONS OF CD4066B, CD4066B-MIL :

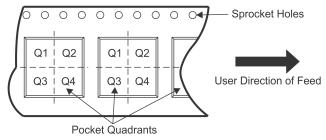
- Catalog: CD4066B
- Automotive: CD4066B-Q1, CD4066B-Q1
- Military: CD4066B-MIL

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Military QML certified for Military and Defense Applications

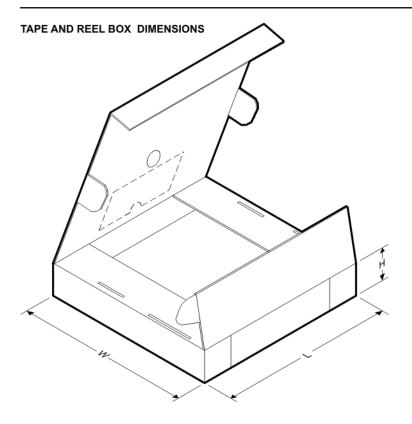

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD4066BM96	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
CD4066BM96	SOIC	D	14	2500	330.0	16.8	6.5	9.5	2.3	8.0	16.0	Q1
CD4066BM96	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
CD4066BM96G4	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
CD4066BM96G4	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
CD4066BMT	SOIC	D	14	250	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
CD4066BNSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD4066BPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD4066BPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD4066BPWRG4	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

Texas Instruments

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Feb-2016

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD4066BM96	SOIC	D	14	2500	333.2	345.9	28.6
CD4066BM96	SOIC	D	14	2500	364.0	364.0	27.0
CD4066BM96	SOIC	D	14	2500	367.0	367.0	38.0
CD4066BM96G4	SOIC	D	14	2500	367.0	367.0	38.0
CD4066BM96G4	SOIC	D	14	2500	333.2	345.9	28.6
CD4066BMT	SOIC	D	14	250	367.0	367.0	38.0
CD4066BNSR	SO	NS	14	2000	367.0	367.0	38.0
CD4066BPWR	TSSOP	PW	14	2000	364.0	364.0	27.0
CD4066BPWR	TSSOP	PW	14	2000	367.0	367.0	35.0
CD4066BPWRG4	TSSOP	PW	14	2000	367.0	367.0	35.0

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

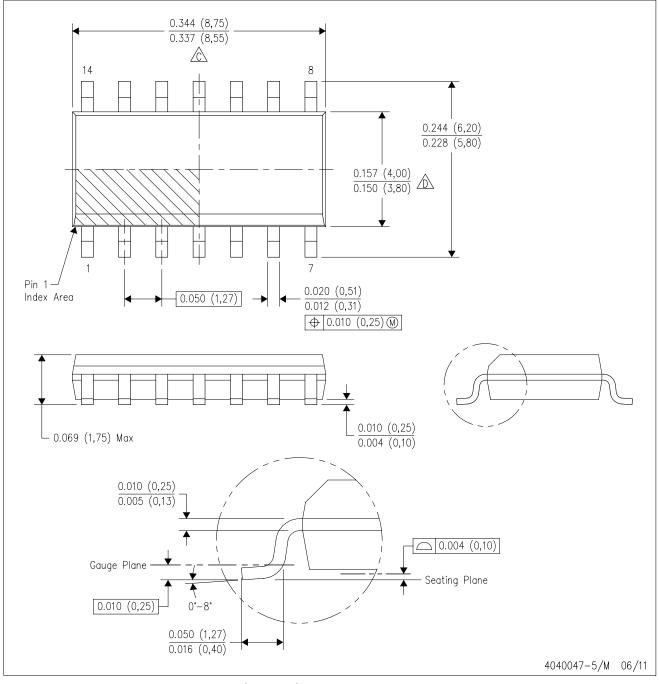
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

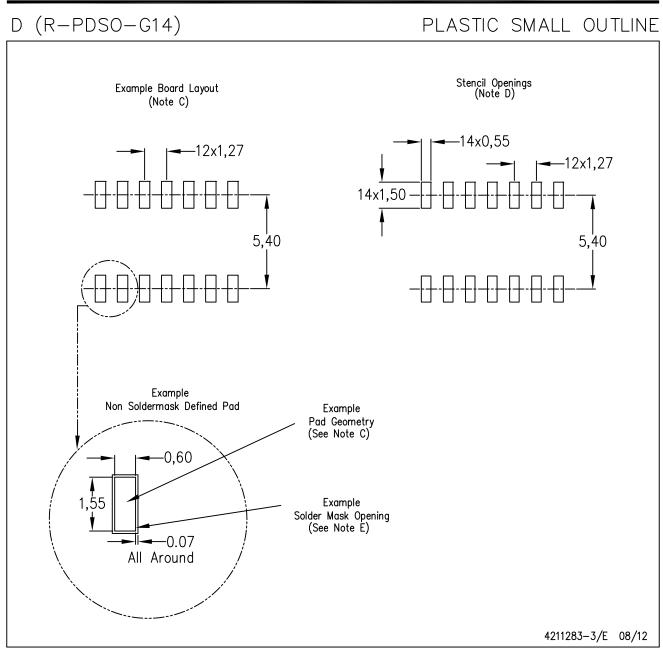
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

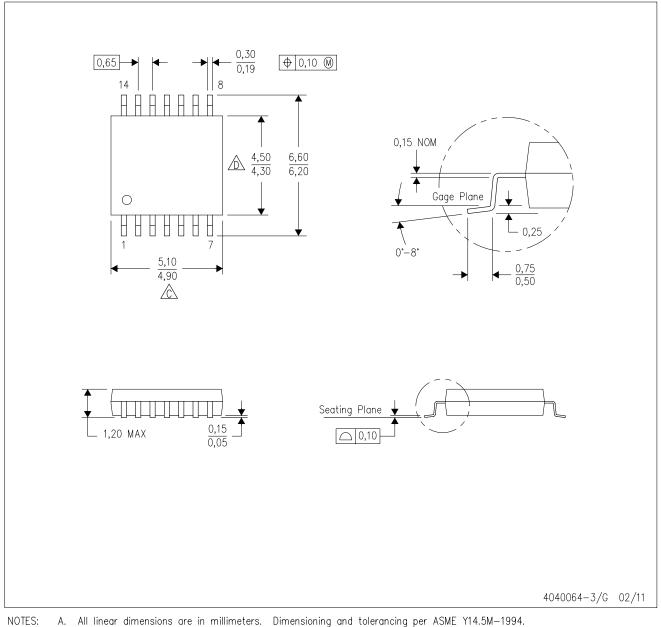
- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

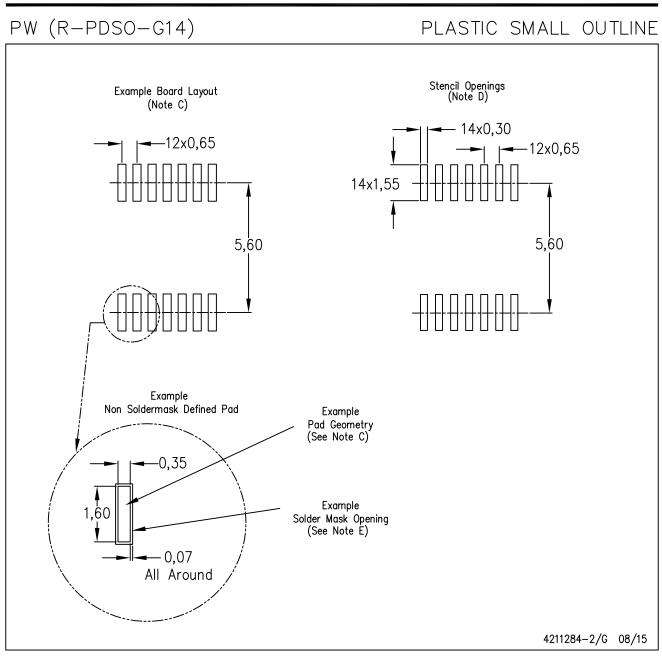
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE


A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated