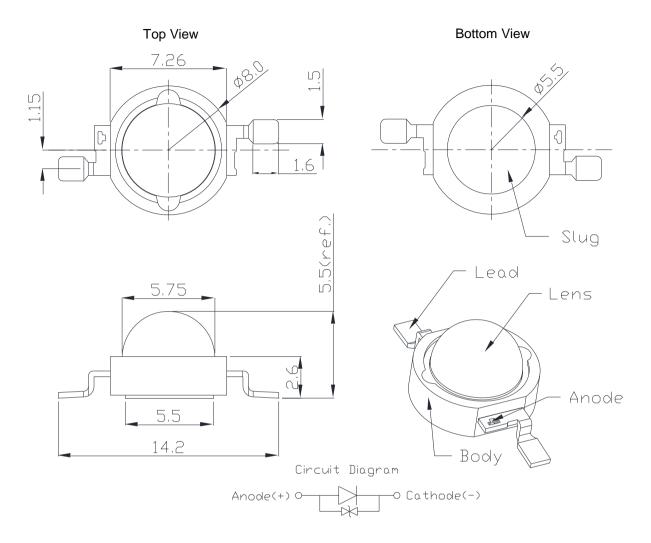


ProLight PM2E-1LLE 1W UV Power LED Technical Datasheet Version: 1.8


Features

- Industry best moisture sensitivity level JEDEC Level 1
- Instant light (less than 100ns)
- Lead free reflow soldering
- RoHS compliant
- Cool beam, safe to the touch
- Superior ESD protection

Typical Applications

- UV gluing, UV curing, UV marking
- UV drying of printing inks and lacquers
- Currency inspection
- Forensic analysis urine, protein stains
- Leak detection using fluorescent dyes
- Detects fluorescing minerals and gems
- Indoor Lighting
- Outdoor Lighting

Emitter Mechanical Dimensions

Notes:

- 1. The Anode side of the device is denoted by a hole in the lead frame.
- 2. Electrical insulation between the case and the board is required. Do not electrically connect either the anode or cathode to the slug.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. Unless otherwise indicated, tolerances are $\pm\,0.20\text{mm}.$
- 6. Please do not bend the leads of the LED, otherwise it will damage the LED.
- 7. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics at 350mA, T_J = 25°C

Radiation	Color Part Number		Radiometric Power (mW)		
Pattern	Coloi	Emitter	Minimum	Typical	
Lambertian	UV	PM2E-1LLE	435	640	

- ProLight maintains a tolerance of ± 7% on flux and power measurements.
- Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics at 350mA, T_J = 25°C

Color	Fo	orward Voltage V _F (Thermal Resistance	
Color	Min.	Тур.	Max.	Junction to Slug (°C/W)
UV	2.85	3.40	4.10	10

[•] ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Optical Characteristics at 350mA, T_J = 25°C

	Peak Wavelength λ _P			Total included Angle (degrees)	Viewing Angle (degrees)
Color	Min.	Тур.	Max.	θ _{0.90V}	2 θ _{1/2}
UV	390 nm	400 nm	410 nm	180	130

[•] ProLight maintains a tolerance of ± 1nm for dominant wavelength measurements.

Absolute Maximum Ratings

UV
350
500 (less than 1/10 duty cycle@1KHz)
±4000V (Class III)
120°C
-20°C - 45°C
-40°C - 100°C
JEDEC 020c 260°C
3
Not designed to be driven in reverse bias

Radiometric Power Bin Structure

	Color	Bin Code	Minimum Radiometric Power (mW)	Maximum Radiometric Power (mW)	Available Color Bins
Ī		Q	435	515	[1]
	1.11.7	R	515	635	2,3,4 [1]
	UV	S	635	755	[1]
		Т	755	875	[1]

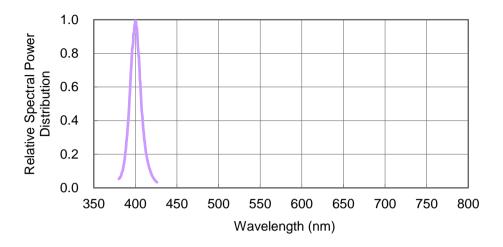
- ullet ProLight maintains a tolerance of \pm 7% on flux and power measurements.
- The flux bin of the product may be modified for improvement without notice.
- ^[1] The rest of color bins are not 100% ready for order currently. Please ask for quote and order possibility.

Peak Wavelength Bin Structure

	Color	Bin Code	Minimum Peak Wavelength (nm)	Maximum Peak Wavelength (nm)
Ī		1	390	395
	UV	2	395	400
	UV	3	400	405
		4	405	410

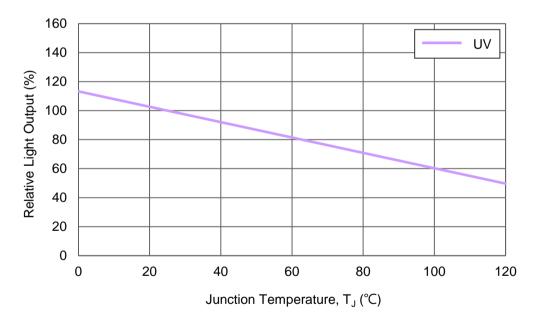
ullet ProLight maintains a tolerance of \pm 1nm for peak wavelength measurements.

Forward Voltage Bin Structure


Color	Bin Code	Minimum Voltage (V)	Maximum Voltage (V)
	А	2.85	3.10
	В	3.10	3.35
UV	D	3.35	3.60
	E	3.60	3.85
	F	3.85	4.10

• ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.


Color Spectrum, $T_J = 25^{\circ}C$

1. UV

Light Output Characteristics

Relative Light Output vs. Junction Temperature at 350mA

Forward Current Characteristics, $T_J = 25^{\circ}C$

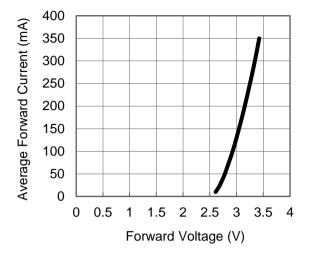
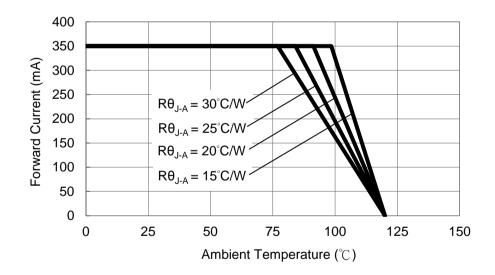
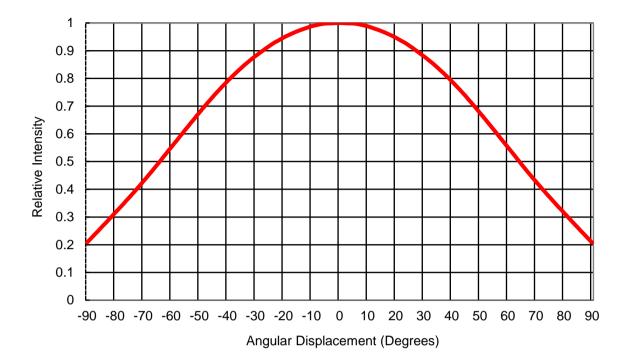



Fig 1. Forward Current vs. Forward Voltage

Fig 2. Relative Radiometric Power vs. Forward Current at T_J=25°C maintained.


Ambient Temperature vs. Maximum Forward Current

1. UV $(T_{JMAX} = 120^{\circ}C)$

Typical Representative Spatial Radiation Pattern

Lambertian Radiation Pattern

Moisture Sensitivity Level - JEDEC Level 1

				Soak Requirements		
Level	Floor Life		Standard		Accelerated	Environment
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C /	168 +5/-0	85°C /	NA	NA
'	Offilifficed	85% RH	100 +5/-0	85% RH	INA	INA

- The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.
- Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C.

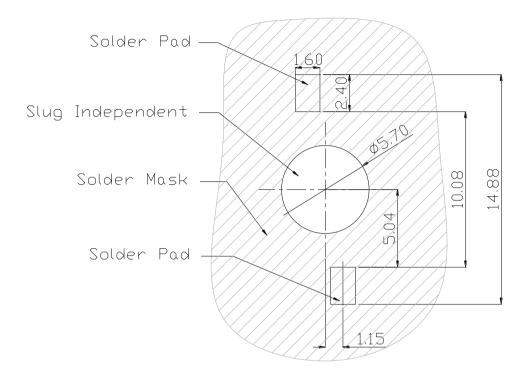
			Soak Requirements			
Level	Flooi	r Life	Stan	dard	Accelerated Environment	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C /	168 +5/-0	85°C /	NA	NA
'	Oriminited	85% RH	100 +5/-0	85% RH	INA	INA
2	1 year	≤30°C /	168 +5/-0	85°C /	NA	NA
	1 year	60% RH	100 +5/-0	60% RH	INA	INA
2a	4 weeks	≤30°C /	696 +5/-0	30°C /	120 +1/-0	60°C /
Za	4 weeks	60% RH	090 +5/-0	60% RH	120 +1/-0	60% RH
3	168 hours	≤30°C /	192 +5/-0	30°C /	40 +1/-0	60°C /
3	100 flours	60% RH	192 +5/-0	60% RH	40 +1/-0	60% RH
4	72 hours	≤30°C /	96 +2/-0	30°C /	20 +0.5/-0	60°C /
4	72 110013	60% RH	90 +2/-0	60% RH	20 +0.5/-0	60% RH
5	48 hours	≤30°C /	72 +2/-0	30°C /	15 +0.5/-0	60°C /
3	46 110015	60% RH	72 +2/-0	60% RH	15 +0.5/-0	60% RH
5a	24 hours	≤30°C /	48 +2/-0	30°C /		60°C /
Ja	24 Hours	60% RH	40 +2/-0	60% RH	10 +0.5/-0	60% RH
6	Time on Label	≤30°C /	Time on Label	30°C /	NΙΔ	NA
	(TOL)	60% RH	(TOL)	60% RH	NA	INA

Qualification Reliability Testing

Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life (RTOL)	25°C, I _F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Operating Life (WHTOL)	85°C/60%RH, I _F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Storage Life (WHTSL)	85°C/85%RH, non-operating	1000 hours	Note 2
High Temperature Storage Life (HTSL)	110°C, non-operating	1000 hours	Note 2
Low Temperature Storage Life (LTSL)	-40°C, non-operating	1000 hours	Note 2
Non-operating Temperature Cycle (TMCL)	0°C to 100°C, 30 min. dwell, <5 min. transfer	100 cycles	Note 2
Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis		Note 3
Natural Drop	On concrete from 1.2 m, 3X		Note 3
Variable Vibration Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis		Note 3
Solder Heat Resistance (SHR)	260°C ± 5°C, 10 sec.		Note 3
Solderability	Steam age for 16 hrs., then solder dip at 260°C for 5 sec.		Solder coverage on lead

Notes:

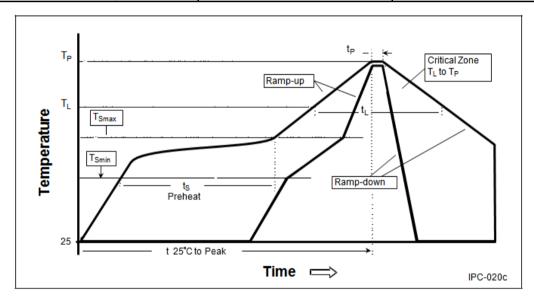
1. Depending on the maximum derating curve.


2. Criteria for judging failure

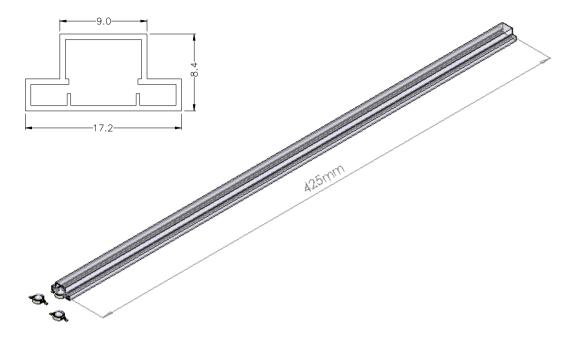
ltem	Test Condition	Criteria for Judgement			
item	rest Condition	Min.	Max.		
Forward Voltage (V _F)	I _F = max DC	-	Initial Level x 1.1		
Luminous Flux or Radiometric Power (Φ_V)	I _F = max DC	Initial Level x 0.7	-		

^{*} The test is performed after the LED is cooled down to the room temperature.

3. A failure is an LED that is open or shorted.


Recommended Solder Pad Design

- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad.


Reflow Soldering Condition

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate $(T_{Smax}$ to $T_P)$	3°C / second max.	3°C / second max.
Preheat		
– Temperature Min (T_{Smin})	100°C	150°C
– Temperature Max (T_{Smax})	150°C	200°C
- Time (t _{Smin} to t _{Smax})	60-120 seconds	60-180 seconds
Time maintained above:		
– Temperature (T_L)	183°C	217°C
– Time (t _L)	60-150 seconds	60-150 seconds
Peak/Classification Temperature (T _P)	240°C	260°C
Time Within 5°C of Actual Peak Temperature (t _P)	10-30 seconds	20-40 seconds
Ramp-Down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a
 double-head soldering iron should be used. It should be confirmed beforehand whether the
 characteristics of the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Tube Packaging

Notes:

- 1. 50 pieces per tube.
- 2. Drawing not to scale.
- 3. All dimensions are in millimeters.
- 4. All dimendions without tolerances are for reference only.

^{**}Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH.

Precaution for Use

- Storage
 - Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH. It is also recommended to return the LEDs to the MBB and to reseal the MBB.
- The slug is is not electrically neutral. Therefore, we recommend to isolate the heat sink.
- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/